Fabrication of three-dimensional tissues.
نویسندگان
چکیده
The goal of tissue engineering is to restore or replace the lost functions of diseased or damaged organs. Ideally, engineered tissues should provide nutrient transport, mechanical stability, coordination of multicellular processes, and a cellular microenvironment that promotes phenotypic stability. To achieve this goal, many engineered tissues require both macro- (approximately cm) and micro- (approximately 100 microm) scale architectural features. In recent years, techniques from the manufacturing world have been adapted to create scaffolds for tissue engineering with defined three-dimensional architectures at physiologically relevant length scales. This chapter reviews three-dimensional fabrication techniques for tissue engineering, including: acellular scaffolds, cellular assembly, and hybrid scaffold/cell constructs.
منابع مشابه
Dimensional changes of three-unit implant-supported zirconia frameworks from scanning to sintering
Background and Aims: Passive fitness of implant frameworks are important factors for long-term success of dental implant restorations. The aim of this in vitro study was to evaluate the dimensional changes of implant supported zirconia frameworks fabricated by Zirkonzahn CAD/CAM system during fabrication stages. Materials and Methods: The master model of 3-unit FDP was made of two implant abut...
متن کاملماتریکس سلول زدایی شده ریه و نقش آن به عنوان داربستی در شرایط آزمایشگاهی تمایز سلولهای بلاستمایی
Background: Increasing number of patients facing end-organ failure, as well as the therapeutic challenges surrounding allotransplantation, has catalyzed the evolution of tissue engineering and regenerative medicine. The successful recapitulation of development requires choosing an ideal scaffold material as a mediator of biochemical and biophysical signals. The extracellular matrix (ECM) functi...
متن کاملThree-Dimensional Human Cardiac Tissue Engineered by Centrifugation of Stacked Cell Sheets and Cross-Sectional Observation of Its Synchronous Beatings by Optical Coherence Tomography
Three-dimensional (3D) tissues are engineered by stacking cell sheets, and these tissues have been applied in clinical regenerative therapies. The optimal fabrication technique of 3D human tissues and the real-time observation system for these tissues are important in tissue engineering, regenerative medicine, cardiac physiology, and the safety testing of candidate chemicals. In this study, for...
متن کاملFabrication of New 3D Phantom for Measuring Geometric Distortion in Magnetic Resonance Imaging System
Introduction: Geometric distortion is a major shortcoming of magnetic resonance imaging (MRI), which has an important influence on the accuracy of volumetric measurements, an important parameter in neurology and oncology. Our goal is to design and construct a new three- dimensional phantom using a 3D printer in order to measure geometric distortion and its reproducibility in...
متن کاملIn vitro fabrication of functional three-dimensional tissues with perfusable blood vessels
In vitro fabrication of functional vascularized three-dimensional tissues has been a long-standing objective in the field of tissue engineering. Here we report a technique to engineer cardiac tissues with perfusable blood vessels in vitro. Using resected tissue with a connectable artery and vein as a vascular bed, we overlay triple-layer cardiac cell sheets produced from coculture with endothel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Advances in biochemical engineering/biotechnology
دوره 103 شماره
صفحات -
تاریخ انتشار 2007